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Abstract

The moving-boundary problem of gas absorption accompanied by an instantaneous irreversible chemical reaction in a limited gas–liquid
system has been analyzed. Analytical solutions have been derived, under the restrictions of equal diffusivities of the two reacting species
and stoichiometric factor of unity, for the cases of significant or negligible gas-film and surfactant-film resistances. A numerical scheme
has been developed for the general case of unequal diffusivities and/or stoichiometric factor differing from unity. The effects of various
parameters like film thickness, gas-bubble volume, stoichiometric factor, initial concentration in the liquid phase, etc., have been illustrated.
Furthermore, the importance of the surfactant-film and gas-film resistances has also been demonstrated. The analytical solution has been
found to be in agreement with the numerical solution, thus demonstrating the efficacy of the concept of negative concentration in solving
such problems. ©2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Gas absorption accompanied by an instantaneous chem-
ical reaction is important in many industrial applications.
A chemical reaction may be considered to be instantaneous
whenever its rate is exceedingly large compared to the rate
of diffusional process, e.g. an ionic reaction which involves
only a proton exchange. Some typical examples of instan-
taneous reactions are absorption of hydrogen sulphide in
solution of sodium hydroxide, absorption of ammonia in
sulfuric-acid solution, etc.

In the course of gas absorption with instantaneous reac-
tion, the solute diffuses from the gas phase into the liquid
phase and reacts immediately and completely upon contact
with the reactant (B) present in the solution. A sharp re-
action plane is thus formed in the liquid phase parallel to
the gas–liquid interface. This constitutes a moving-boundary
problem because the reaction front moves with time owing
to the depletion of component B in the liquid. Thus, the prob-
lem of mass transfer with instantaneous chemical reaction is
analogous to the classical Stefan’s problem. Danckwerts [3]
as well as Sherwood and Pigford [8] developed a theory of
gas absorption with an instantaneous chemical reaction for
an infinite body of a gas in contact with a semi-infinite liquid
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medium. For gas absorption in thin liquid films surrounded
by limited gas pockets, the effect of finite thicknesses of the
media would be strongly imposed. The gas phase is actually
finite in many applications, and this is not merely a more
general feature of analysis.

When a surface-active agent contaminates the gas–liquid
interface, the surface resistance plays an important role in
determining the actual rate of mass transfer. The gas-phase
resistance, although often negligible for slower reactions,
is never really zero and particularly affects the overall
mass-transfer rate when the gas–liquid reaction is fast. In
the limiting case of an instantaneous reaction, the gas-phase
resistance may become the controlling one, e.g. in absorp-
tion of ammonia in sulfuric-acid solution [2].

This paper presents a theoretical analysis of the gas ab-
sorption with an instantaneous chemical reaction of the type

A(gasphase) + YA B(liquid phase)→Product(liquid
phase) in systems with finite thicknesses of gas and liquid
media. An analytical solution has been obtained for the case
of equal diffusivities of A and B in the liquid phase, and
stoichiometric factor of unity, using the concept of negative
concentration proposed by Sada and Ameno [7]. The solu-
tion has also been analytically extended to the more general
case of significant gas-film and surfactant-film resistances.

de Lind van Wijngaarden et al. [4] and Versteeg [9]
pointed out the ‘equal diffusivities’ condition to be a severe
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Fig. 1. A schematic diagram of a finite gas–liquid film system.

limitation. Analytical solution of the diffusion equations
for unequal diffusivities was not possible in their work, and
hence numerical methods were resorted to. A numerical so-
lution for the general problem has been obtained here using a
space transformation ( that immobilizes the moving-reaction
front) in conjunction with the Crank-Nicolson implicit
finite-difference scheme. Computational convergence diffi-
culties often arise in this tricky problem which deceptively
appears simple. A double-step iterative method has to be
used to accurately obtain the converged position of the
reaction front at any marked time. Development of this
numerical scheme is one of the modest contributions of the
present paper to the solution of moving-boundary problems.

2. Mathematical model

We consider a liquid film surrounded by gas on either side
as shown in Fig. 1. Because of symmetry, we only need to
analyze one half of the film. The liquid in the film is assumed
to be stagnant. Let the position of the reaction front at any
moment be given byxr (t). The pertinent partial differential
equations and the initial and boundary conditions describing
the process may be stated as follows:

Continuity of species A:

∂CA

∂tc
= DA

∂2CA

∂x2
for 0 ≤ x < xr (1)

Continuity of species B:

∂CB

∂tc
= DB

∂2CB

∂x2
for xr < x < a (2)

Initial conditions:

At tc = 0; CA = 0 for x = a;
CB = CB0 for x < a (i)

Boundary conditions:

At x = 0; ∂CB

∂x
= 0 for tc > 0 (ii)

At x = +a; −Vp
∂CAg

∂tc
= S DA

∂CA

∂x
(iii)

whereVp is volume of the gas pocket; for example, in the
context of a foam bubble,Vp = Vb/12 for a regular pentag-
onal dodecahedron, as an idealized structural model of the
real polyhedral bubble, andCA = Ke CAg, by the assump-
tion of equilibrium at gas–liquid interface. The volume of
gas pocket can be taken as a constant for lean mixtures of
component A with an inert gaseous component.

At x = xr(tc); CA = 0; CB = 0 (iv)

At x = xr(tc); YADA
∂CA

∂x
= −DB

∂CB

∂x
(v)

Dependence of the position of the reaction front on time ren-
ders the problem nonlinear via conditions (iv) and (v) and
Eqs. (1) and (2). Although the apparent form of these equa-
tions and conditions is linear, the time-dependent boundary
condition makes the moving-boundary problems inherently
nonlinear(Cf. [10]).

By perfect differential

dCA =
(

∂CA

∂xr

)
tc

dxr +
(

∂CA

∂tc

)
xr

dtc (3)

andCA (xr ) = 0, we obtain

dxr

dtc
= − (∂CA/∂tc)|xr

(∂CA/∂xr)|tc
(4)

Eq. (4) describes the inward drift of the reaction front away
from the gas–liquid interface.

2.1. Analytical solutions

2.1.1. Concept of negative concentration
Typical instantaneous concentration profiles of the solute

A and liquid-phase reactant B in a quiescent liquid of a fi-
nite depth, for absorption accompanied by an instantaneous
reaction, are shown in Fig. 2. Inasmuch as the component A
is consumed by reaction with reactant B, the concentration
of B may be regarded as a fictitious negative concentration
of A [7]. Thus , the concentration of B in the spatial do-
mainxr < x< a is taken asCB =−CA, and the diffusion co-
efficient is taken as a step function of the concentration, i.e.
D = DA if CA > 0 andD = DB if CA < 0. However, ifDA 6=DB
no analytical solution would still be possible. We therefore
present here first the analytical results for the restricted case
of equal diffusivities and of stoichiometric factor of unity.
Under these constraints, the concept of negative concentra-
tion transforms the original moving-boundary problem into
a linear one.

We define the following dimensionless variables:

X = x

a
; T = DA tc

a2
; C = CA

C∗
A0

and q = CB0

C∗
A0

(5)
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Fig. 2. Typical concentration profiles for gas absorption accompanied by
an instantaneous chemical reaction.

If we introduce these dimensionless variables and substi-
tute CB =−CA, DB = DA, andYA = 1, Eqs. (1) and (2) be-
come identical as:

∂C

∂T
= ∂2C

∂X2
(6)

The initial and boundary conditions (i)–(iii) transform into
the following set:

T = 0; C = −q; 0 ≤ X < 1 (vi)

X = 0; ∂C

∂X
= 0; T > 0 (vii)

X = 1; ∂C

∂X
= −α

∂C

∂T
; T > 0 (viii)

Now we introduce a new variable,U, defined as

U = C + q (7)

In terms ofU, Eq. (6) and conditions (vi)–(viii) become

∂U

∂T
= ∂2U

∂X2
(8)

T = 0; U = 0; 0 ≤ X < 1 (ix)

X = 0; ∂U

∂X
= 0; T > 0 (x)

X = 1; ∂U

∂X
= −α

∂U

∂T
(xi)

Using Laplace transform technique for the linear problem
(Eq. (8) and conditions (ix)–(xi)) and incorporating initial
condition at boundaryX= 1, i.e.

U(1, 0) = 1 + q, (xii)

we obtain

C(X, T ) + q

1 + q
= α

1 + α
+

∞∑
n=1

2αexp(−P 2
n T )cos(PnX)

[1 + α + α2P 2
n ]cos(Pn)

(9)

wherePn’s are roots of

tanPn = −α Pn (10)

The necessary and sufficient condition, which would ele-
gantly prove the reductionality of the present analytical so-
lution to the asymptotic limits of physical absorption and of
semi-infinite media is [1]:

−(∂CA/∂x)|x=0, Instantaneous reaction

−(∂CA/∂x)|x=0,Physical absorption
|finite system

= 1 + CB0

YAC∗
A0

|Semi-infinite system

The reaction front is determined by the spatial locus corre-
sponding to change of sign ofC.

The position of the reaction front (Eq. (4)) is also de-
scribed by

dXr

dT
= − (∂C/∂T )Xr

(∂C/∂Xr)T
(11)

Substituting forC from Eq. (9) into Eq. (11), we obtain

dXr

dT

=
∑∞

n=1[2αP 2
n exp(−P 2

n T )cos(PnXr)]/[(1 + α + α2P 2
n )cos(Pn)]∑∞

n=1[2αP 2
n exp(−P 2

n T )sin(PnXr)]/[(1 + α + α2P 2
n )cos(Pn)]

(12)

This nonlinear ordinary differential equation is however
not amenable to analytical solution and hence it needs
to be solved numerically, e.g. by using the fourth-order
Runge-Kutta method.

2.1.2. Amounts of gas absorbed, unreacted or reacted
The total amount of gas A absorbed by the half film is

Mt =
∫ t∗c

0
DAS

(
∂CA

∂x

)
x=a

dtc (13)

Mt

C∗
A0aS

= (1 + q)α

[ ∞∑
n=1

An −
∞∑

n=1

Anexp(−P 2
n T ∗)

]
(14)

This can be evaluated easily from Eq. (14), where

An = 2α2

(1 + α + α2P 2
n )

WhenT∗ approaches infinity, Eq. (14) reduces to

M∞
C∗

AoaS
= (1 + q)α

∞∑
n=1

An (15)

Combining Eqs. (14) and (15), we obtain

Mt

M∞
= 1 −

∑∞
n=1 Anexp(−P 2

n T ∗)∑∞
n=1 An

(16)
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The amount of free solute present in the half film at timetc∗
is

Mfr = S

∫ a

xr (t∗c )

CA(x, t∗c ) dx (17)

This leads to

Mfr

C∗
A0aS

=
[

α

1 + α
− q

1 + q

]
(1 + q)

∞∑
n=1

×
[

2α(1 + q)exp(−P 2
n T ∗)sin(PnX)

(1 + α + α2P 2
n )Pncos(Pn)

]X=1

X=Xr

(18)

The amount of solute A that has reacted in the half film
during timetc* is

Mr = Mt − Mfr

2.2. Significant gas-film and surface-film resistances

The surface-film and gas-film resistances cannot be ig-
nored in a number of practical gas–liquid systems. We
present now the analysis of this important combined case
for the restrictions of equal diffusivities and stoichiomet-
ric factor of unity. A diffuses from the bulk of gas to the
surface film. The liquid-phase concentration of A at the
surfactant-film-gas-interface,C∗

A, is now assumed to be
in equilibrium with the interfacial gas-phase concentration
CAgi .

The governing differential equation is identical with Eq.
(6) while the first of the boundary conditions remains the
same as the condition (vii). The second boundary condition,
instead of condition (iii), has to be now rewritten in dimen-
sional form as

−Vp
dCAg

dtc
= KgS(CAg − CAgi) = KsS(C∗

A − CA)

= SDA
∂CA

∂x
|x=a (19)

where

C∗
A = KeCAgi (20)

Eq. (20) follows from the assumption of a physical equilib-
rium at gas-surfactant-film interface. From the last equality
in Eq. (19), we have

C∗
A = DA

Ks

∂CA

∂x
|x=a + CA (21)

while from the second and last term, we obtain

CAgi = −DA

Kg

∂CA

∂x
|x=a + CAg (22)

From Eqs. (21) and (22), we eliminateC∗
A andCAgi using

Eq. (20) and obtain

KeCAg =
[
DA

Ks
+ DAKe

Kg

]
∂CA

∂x
|x=a + CA (23)

Now, using Eqs. (19) and (23), we obtain the following
dimensionless boundary condition atX= 1

−α

[
∂C

∂T
+ 1

β

∂

∂T

∂C

∂X

]
= ∂C

∂X
(24)

where

α = Vp

KeSa
(25)

and

1

β
= DA

a

(
1

Ks
+ Ke

Kg

)
(26)

Again introducing the transformation (7), we rewrite condi-
tion (24) as

−α

[
∂U

∂T
+ 1

β

∂

∂T

∂U

∂X

]
= ∂U

∂X
at X = 1 (27)

Further, the initial condition for the present case is the same
as condition (ix).

The analytical solution of Eq. (8), subject to initial con-
dition (ix) and boundary conditions (x) and (27), is obtained
by applying the Laplace transform technique. The final form
of solution is

C(X, T ) + q

1 + q
= α

(1 + α)
+

∞∑
n=1

× 2α(β − αP 2
n )exp(−P 2

n T )cos(PnX)

[β + αβ − (2α − α2 − α2β)P 2
n + (α2P 4

n /β)]cos(Pn)

(28)

wherePn’s are roots of

tanPn = − αβPn

[αP 2
n − β]

(29)

The position of reaction front is obtained from Eq. (11)
and the following expressions:

∂C

∂T
= (1 + q)

∞∑
n=1

× 2α(β − αP 2
n )(−P 2

n )exp(−P 2
n T )cos(PnX)

[β + αβ − (2α − α2 − α2β)P 2
n + (α2P 4

n /β)]cos(Pn)

(30)

∂C

∂Xr

= (1 + q)

∞∑
n=1

× (−2α)(β − αP 2
n )Pnexp(−P 2

n T )sin(PnX)

[β + αβ − (2α − α2 − α2β)P 2
n + (α2P 4

n /β)]cos(Pn)

(31)

The analytical solution of Eq. (11) incorporating expres-
sions (30) and (31) is however not possible, and hence the
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fourth-order Runge-Kutta method has been used to evalu-
ate the position of the reaction front. The total amount of
gas absorbed by the half film and that unreacted at timeT*
are easily evaluated from Eqs. (13) and (17), respectively,
together with Eq. (28).

3. Numerical solution of the general problem (DA 6= DB;
YA 6= 1)

The general problem of mass transfer with instantaneous
chemical reaction, not being amenable to any analytical so-
lution, has been solved numerically using the front-fixing
method. The resulting nonlinear differential equations for the
two regions are solved separately using the Crank–Nicolson
implicit finite-difference scheme. The solutions for the two
regions (i.e. concentration profiles of A and B) are coupled
through the boundary conditions at the location of the re-
action front. Thomas algorithm has been used to solve the
tridiagonal system of finite-difference equations. The nu-
merical procedure is iterative, marking the time, in order to
obtain the convergent values ofXr andẊr .

Region Containing A (xr (t) < x≤ a)
The moving boundary is fixed by means of the following

coordinate transformation:

ξ = a − x

a − xr(t)
such that 0< ξ ≤ 1 (32)

and the moving boundary is fixed atξ = 1. With this trans-
formation, the species continuity equation for A becomes

∂CA

∂tc
= DA(∂2CA/∂ξ2)

(a − xr(t))2
− ξ ẋr (t)(∂CA/∂ξ)

a − xr(t)

for 0 < ξ ≤ 1 (33)

Region Containing B ( 0≤ x< xr )
The moving boundary is fixed in this region by the Landau

transformation

ξ = x

xr(t)
(34)

such that 0≤ j < 1. The species continuity equation for B
becomes

∂CB

∂tc
= DB

(xr(t))2

∂2CB

∂ξ2
+ ξ ẋr (t)

xr (t)

∂CB

∂ξ
for 0 ≤ ξ < 1

(35)

In terms of dimensionless timeT, Eqs. (33) and (35) become

∂CA

∂T
= 1

(1 − Xr(T ))2

∂2CA

∂ξ2
− ξẊr (T )

(1 − Xr(T ))

∂CA

∂ξ
(36)

and

∂CB

∂T
= p

(Xr(T ))2

∂2CB

∂ξ2
+ ξẊr (T )

Xr(T )

∂CB

∂ξ
(37)

where

p = DB

DA
; Xr = xr

a
; and Ẋr (T ) = dXr(T )

dT

The corresponding boundary conditions are as follows:

CA(ξ, 0) = 0; CB(ξ, 0) = CB0 for T = 0 (38)

α
∂CA

∂T
= 1

(1 − Xr(T ))

∂CA

∂ξ
for ξ = 0 andT ≥ 0 (39)

CA = 0; CB = 0 at ξ = 1 and forT ≥ 0 (40)

YA

(1 − Xr(T ))

∂CA

∂ξ
= p

Xr(T )

∂CB

∂ξ
atξ = 1 and forT ≥ 0

(41)

∂CB

∂ξ
= 0 at ξ = 0 and forT ≥ 0 (42)

Further, the equation for the position of reaction front can
be rewritten as

dXr

dT
= −(1 − Xr)

(∂CA/∂T )|Xr

(∂CA/∂Xr)|T (43)

Using Crank–Nicolson implicit finite difference scheme, the
Eqs. (36) and (37) are discretized into the following pair:

−rC
j+1
Ai+1

+ [2r + 2(1 − X
j
r )2]Cj+1

Ai
− rC

j+1
Ai−1

= (r − Aj)C
j

Ai+1
+ [2(1 − X

j
r )2 − 2r]Cj

Ai

+(r + Aj)C
j

Ai−1
(44)

where

Aj = ξiẊ
j
r (1 − X

j
r )δT

δξ

and

r = δT

(δξ)2

and

−prC
j+1
Bi+1

+ [2pr + 2(X
j
r )2]Cj+1

Bi
− prC

j+1
Bi−1

= [pr + Aj ]Cj
Bi+1

+ [2(X
j
r )2 − 2pr]Cj

Bi

+(pr − Aj ]Cj
Bi−1

(45)

where

Aj = ξiX
j
r Ẋ

j
r δT

δξ

The boundary conditions become

1

X
j
r

= 1 + YA(C
j

AMD − C
j

AMD−1)

(C
j
BMD − C

j

BMD−1)
(46)
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Fig. 3. Flow-chart of the algorithm used in the numerical solution of the
moving-boundary problem.

Ẋ
j
r = −(1 − X

j
r )

[Cj

AMD − C
j−1
AU ]

[Cj

AMD − C
j

AMD−1]

δξ

δT
(47)

where

U = 1 − X
j−1
r

1 − X
j
r

and

α
[Cj+1

Ai − C
j

Ai ]

δT
= 1

(1 − X
j
r )

[Cj

Ai+1 − C
j

Ai−1]

δξ
(48)

C
j

A−l is a fictitious quantity which is eliminated using Eqs.
(44) and (48). This leads to

C
j+1
A0 = C

j

A0 − 2δT [Cj

A0 − C
j

A1]

δξ(1 − X
j
r )[(1 − X

j
r )δξ + 2α]

(49)

3.1. Algorithm

The flow-chart of the algorithm is shown in Fig. 3. For
the first time step, the semi-infinite solution is used. For
the subsequent times, at each step there are (N+ 1) nodal
points at which concentrations have to be determined in each
of the two regions, i.e. of A and B, respectively. (N− 1)
equations for A are given by Eq. (44) and additional two
equations are obtained from the left and right hand boundary
conditions. Similarly, for B, Eq. (45) and the two boundary
conditions furnish the required number of equations. For A,
these boundary conditions are Eq. (49) for L.H.B.C. and
C

j

A = 0 for R.H.B.C. whereas for B the L.H.B.C. isCj

B0 =
C

j

Bl and R.H.B.C. isCj
B = 0.

Fig. 4. Evolution of the reaction front and the concentration profiles of
A and B within the liquid film with time.

At each time, the concentration profiles are computed it-
eratively until converged values ofXr andẊr are obtained.

4. Results and discussion

4.1. Analytical solution

As the reactive gas A comes in contact with the
liquid-phase reactant B at the interface, the two species react
quickly and completely. For some short but finite time the
reaction front would remain at the interface. If the supply
of A is sufficiently high, we would see the reaction front
moving towards the center of the film. Fig. 4 illustrates this
situation and shows how the two concentration profiles and
the advancing front position evolve with time of contact
between the gas and liquid film. Once the reaction front
reaches the center of the film, all of B would be consumed
and the problem would then reduce to one of pure diffu-
sion of A, if B is the limiting component. The component
A would finally attain the equilibrium value of concentra-
tion. The positions of the reaction front calculated from
the numerical solution of Eq. (12) are in perfect agreement
with those calculated from the sign change of the concen-
tration profile, as shown on the right hand side in Fig. 4.
Here, the crosses represent front positions determined from
sign changes of the concentration profile. Thus, the present
method accurately predicts the position of the reaction front
and also the concentration profile in the film. When either
A or B gets completely consumed, the solution reduces to
that for the pure diffusion problem. The total amount of
gas A absorbed by the film, the amount of A reacted , and
that which remained unreacted in the film have also been
computed along with their variations with time.

4.1.1. Effect of initial solute concentration, CB0, on the
movement of reaction front

For largeCB0, the reaction front moves backward towards
the surface of the film after first having advanced towards
the center of the film. Initially the rate of diffusion of A
is large owing to the steep concentration gradients. This
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Fig. 5. Effect of film thickness, gas-pocket volume, and equilibrium
distribution factor on the evolution of concentration profiles and the
reaction front with time.

causes the reaction front to move initially towards the cen-
ter. This movement is however halted and even reversed as
the component A in the gas gets depleted and as the sup-
ply of A to the liquid gets diminished. Concentration of B
being still large in the central region of the liquid film, the
species B diffuses towards the region containing unreacted
A and gradually depletes that region of free A in the pro-
cess. This, in effect, pushes the reaction front back towards
the gas–liquid interface. If A is the limiting component,
the reaction front would eventually return right back to the
gas–liquid interface when all of A has been exhausted. For
still largerCB0 (q> 0.4), the entire amount of A will be re-
acted at the reaction front which itself would remain station-
ary at the gas–liquid interface owing to the overwhelming
excess of the species B in the liquid film.

4.1.2. Effect of film thickness, gas-pocket volume and
equilibrium-distribution factor

In the present dimensionless formulation, the film thick-
ness,a, gas pocket volume,Vp, and the equilibrium distribu-
tion factor,Ke, are combined into a single parameter,α. Fig.
5 shows the concentration profile in the half film for a range
of α values typical of practical gas–liquid systems. At time
T= 0.1, an increase inα value from 0.2 to 0.8 results in a
change in position of reaction front from 0.4 to 0.26 indicat-
ing the increase in the extent of B consumed, and hence in
the extent of absorption of component A. The enhancement
in the rate of absorption of component A with an increase
in α follows an asymptotic behaviour, i.e. an increase inα

from 0.2 to 0.5 changesXr from 0.4 to 0.3 whereas a fur-
ther increase inα from 0.5 to 0.8 shows a change inXr from
0.30 to 0.26 only. Thus, it shows a limiting influence of this
parameter on the gas absorption rate in the liquid film.

Fig. 6 shows how the nondimensionalized flux of A varies
with time and the effect of the parameterα on its temporal
variation.

Fig. 6. Effect of film thickness, gas-pocket volume, and equilibrium
distribution factor on the variation of nondimensionalized flux of A with
time.

Fig. 7. Effect of gas-phase and surfactant-film mass transfer resistances
on the concentration profiles.

4.1.3. Effect of surfactant and gas-film resistances
The surfactant-film resistance and the gas-film resistance

show a marked effect on the rate of gas absorption. The gas
film mass transfer coefficient,Kg, was estimated from the
asymptotic value of Sherwood number of 6.58. The values of
surfactant-film mass transfer coefficient for different surfac-
tants such as Teepol, Triton X-100, sodium lauryl sulphate,
etc. were taken from the literature [5,6]. The concentration
profiles within the film for various values ofβ have been
shown in Figs. 7–9. Obviously, the time for the same amount
of A to be absorbed decreases asβ is increased. Fig. 10
shows how the time for complete consumption of B depends
on β. It is evident from this figure that forβ > 10, the con-
centration profiles would be identical with those obtained
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Fig. 8. Effect of gas-phase and surfactant-film mass transfer resistances
on the concentration profiles.

Fig. 9. Effect of gas-phase and surfactant-film mass transfer resistances
on the concentration profiles.

Fig. 10. Dependence of the time of complete consumption of B on gas-film
and surfactant-film resistances.

for no gas-film and surface-film resistances, absorption rates
becoming independent ofβ for greater values of the latter.
Under these conditions, the liquid-phase resistance would be
the sole significant resistance influencing the gas absorption.
It is found from our calculations that the major contribution
to the overall resistance comes from the gas-film resistance
in the range ofβ values from 0.02 to 0.1. For 0.1< β < 10,
all the three resistances would be contributory.

Fig. 11. Comparison of the numerical simulation with the analytical
solution for the special case of equal diffusivities and unit stoichiometric
factor.

Fig. 12. Effect of stoichiometric factor on the evolution of the concen-
tration profiles and locus of reaction front.

4.2. Numerical simulation

The accuracy of the numerical simulation procedure pro-
posed in this paper has been assessed in Fig. 11. The nu-
merical solution of the absorption problem involving instan-
taneous reaction, with equal diffusivities for species A and
B and stoichiometric factor of unity, is in a close agreement
with the analytical solution as shown in these figures. This
agreement between the two solutions may be regarded as
an endorsement on the authenticity and accuracy of each of
these solutions.

4.2.1. Effect of stoichiometric factor YA
Fig. 12 shows the concentration profiles as well as the

evolution of reaction front over time forYA = 0.5 and 1.0.
The reaction front versus time profiles in the two cases are
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similar in nature, but the time gradients of the reaction front
position are very steep forYA = 1.0. The nondimensional
time taken by the reaction front to reach the center of the
liquid film is 0.36 forYA = 0.5 against only 0.2 forYA = 1.0.
This may be rationalized as follows: Twice the number of
moles of A will have to diffuse for complete consumption
of B in case ofYA = 0.5 against that forYA = 1.0. Thus, for
YA = 0.5, the time for the reaction front to reach the center
is expected to be approximately twice as large as that for
YA = 1.0. This rationale is clearly borne out by the above
results.

5. Conclusions

An exhaustive analysis of the problem of gas absorption
accompanied by an instantaneous chemical reaction in finite
gas–liquid systems has been performed using analytical and
numerical approaches. The new analytical solutions for the
special case of equal diffusivities and unit stoichiometric fac-
tor have also been demonstrated to illustrate the behavior of
finite systems involving moving reaction fronts. Typical ap-
plications of these theoretical advances would be in the anal-
yses of foam-bed reactors and other chemical-engineering
or materials-science systems involving stagnant liquid
or solid films exposed to finite immiscible liquid or gas
pockets.

6. Notation

a half-film thickness, m
A component diffusing from the gas phase, or func-

tions defined in Eqs. (44) and (45)
B component in liquid phase
C concentration , k mol m−3, or dimensionless con-

centration
D diffusion coefficient, m2 s-1

i index (equals 0,1,2,.....)
j index (equals 0,1,2,....)
Ke distribution factor, dimensionless
K mass-transfer coefficient, m s−1

M amount of A in a half film, k mol
n index for roots (equals 1,2,...)
p ratio of diffusivities (equalsDB/DA), dimensionless
P nonzero root of transcendental Eq. (10) or Eq. (29),

s−1

q ratio of initial concentration of B to initial satura-
tion concentration of A in liquid, dimensionless

r diffusion number, defined in Eq. (44), dimension-
less

S surface area of the liquid film, m2

t time, s
T nondimensionalized time
U parameter defined in Eq. (47), dimensionless

V volume, m3

x Cartesian coordinate, or position, m
X nondimensionalized Cartesian coordinate or posi-

tion, dimensionless
YA moles of liquid-phase reactant B which react per

mole of A, dimensionless

6.1. Greek letters

α dimensionless parameter (equalsVp/Ke S a)
β dimensionless parameter defined in equation (26)
ξ space transformation defined in Eqs. (32) and (34),

dimensionless

6.2. Subscripts

A of gas-phase reactant
b of bubble
B of liquid-phase reactant
c of contact
e equilibrium
fr free attc = tc*
g in gas phase
i i th
j j th
n n th
r reacted attc = tc*
0 initial
∞ at infinite time of contact

6.3. Superscripts

i at interface
j j th
* saturation or total rate of change with time
• rate of change with time

6.4. Prefix

δ step size
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